

VORON TRIDENT ASSEMBLY

We build space shuttles with gardening tools so anyone can have a space shuttle of their own.

VERSION 2023-07-07

INTRODUCTION

Before you begin on your journey, a word of caution.

In the comfort of your own home you are about to assemble a robot. This machine can maim, burn, and electrocute you if you are not careful. Please do not become the first VORON fatality. There is no special Reddit flair for that.

Please, read the entire manual before you start assembly. As you begin wrenching, please check our Discord channels for any tips and questions that may halt your progress.

Most of all, good luck!

THE VORON TEAM

Introduction	04	
Hardware	07	
Frame	12	
A/B Drive and Idler	22	
Y Axis	40	
Z Axis	62	
X Axis	98	
Belts	118	

Print Bed	138
StealthBurner	162
Wiring Prep	164
Electronics	180
Controller Prep	202
Wiring	206
Skirts	238
Panels	260

PART PRINTING GUIDELINES

The Voron Team has provided the following prwint guidelines for you to follow in order to have the best chance at success with your parts. There are often questions about substituting materials or changing printing standards, but we recommend you follow these:

3D PRINTING PROCESS

Fused Deposition Modeling (FDM)

MATERIAL ABS

LAYER HEIGHT Recommended: 0.2mm

EXTRUSION WIDTH Recommended: Forced 0.4mm INFILL TYPE Grid, Gyroid, Honeycomb, Triangle or Cubic

INFILL PERCENTAGE Recommended: 40%

WALL COUNT Recommended: 4

SOLID TOP/BOTTOM LAYERS Recommended: 5

PRINT IT FORWARD (PIF)

Often times community members that have issues printing ABS will bootstrap themselves into a VORON using our Print It Forward program. This is a service where approved members with VORON printers can make you a functional set of parts to get your own machine up and running. Check Discord if you have any interest in having someone help you out.

INTRODUCTION

VORONDESIGN.COM

FILE NAMING

By this time you should have already downloaded our STL files from the Voron GitHub. You might have noticed that we have used a unique naming convention for the files. This is how to use them.

PRIMARY COLOR

Α

ACCENT COLOR

- Example z_joint_lower_x4.stl These files will have nothing at the start of the filename.
- Example [a]_tensioner_left.stl We have added "[a]" to the front of any STL file that is intended to be printed with accent color.

QUANTITY REQUIRED

Example [a]_z_belt_clip_lower_x4.stl

If any file ends with "_x#", that is telling you the quantity of that part required to build the machine.

HOW TO GET HELP

If you need assistance with your build, we're here to help. Head on over to our Discord group and post your questions. This is our primary medium to help VORON Users and we have a great community that can help you out if you get stuck.

https://discord.gg/voron

REPORTING ISSUES

Should you find an issue in the documentation or have a suggestion for an improvement please consider opening an issue on GitHub (<u>https://github.com/VoronDesign/Voron-Trident/issues</u>). When raising an issue please include the relevant page numbers and a short description; annotated screenshots are also very welcome. We periodically update the manual based on the feedback we get.

THIS IS JUST A REFERENCE

This manual is designed to be a simple reference manual. Building a Voron can be a complex endeavour and for that reason we recommend downloading the CAD files off our Github repository if there are sections you need clarification on. It can sometimes be easier to follow along when you have the whole assembly in front of you.

https://github.com/vorondesign

https://docs.vorondesign.com

VORONDESIGN.COM

BUTTON HEAD CAP BOLT (BHCS)

Metric fastener with a domed shape head and hex drive. Most commonly found in locations where M5 fasteners are used.

ISO 7380-1

SOCKET HEAD CAP BOLT (SHCS)

Metric fastener with a cylindrical head and hex drive. The most common fastener used on the Voron.

ISO 4762

FLAT HEAD COUNTERSUNK BOLT (FHCS)

Metric fastener with a cone shaped head and a flat top.

ISO 10642

SELF TAPPING SCREW

Fastener with a pronounced thread profile that is bolted directly into plastic.

HEX NUT

Hex nuts couple with bolts to create a tight, secure joint. You'll see these used in both M3 and M5 variants throughout this guide.

ISO 4032

HEAT SET INSERT

Heat inserts with a soldering tip so that they melt the plastic when installed. As the plastic cools, it solidifies around the knurls and ridges on the insert for excellent resistance to both torque and pull-out.

POST INSTALL T-SLOT NUT (T-NUT)

Nut that can be inserted into the slot of an aluminium profile. Used in both M3 and M5 variants throughout this guide. Often also called "roll-in t-nut".

HAMMERHEAD NUT

Nut that can be inserted into the slot of an aluminium profile. Used exclusively for panel mounting, all other components use T-Slot nuts.

F695 BEARING

A ball bearing with a flange used in various gantry locations.

625 BEARING

A ball bearing used on the Voron Z drives.

VORONDESIGN.COM

SHIM

Not to be confused with stamped washers. These are used in all M5 call-out locations in this manual.

DIN 988

WASHER

Usually stamped from sheet metal this type of spacer is not as consistent in tickness as the shims are. Only used in M3 size.

DIN 125

PULLEY GT2 pulley used on the motion system of the Voron.

IDLER

GT2 idler used in the motion system of the Voron.

THUMB NUT Used in the print bed as a spacer.

DIN 466-B

SET SCREW

Small headless fastner with an internal drive. Used in pulleys and other gears. Also called a grub screw.

ISO 4026

VORONDESIGN.COM

BALL-END DRIVER

Some parts of this design require the use of a ball-end hex driver for assembly. We recommend you get a 2.0mm, 2.5mm and 3mm one.

The 2.5mm hex driver will see a lot of use in this build. A quality driver is strongly recommended. Refer to the sourcing guide for suggestions.

ADDITIONAL TOOLS

We provide additional tool recommendations in our sourcing guide. Visit <u>https://vorondesign.com/sourcing_guide</u> and switch to the "Voron Tools" tab at the bottom of the page.

VORONDESIGN.COM

BLIND JOINT BASICS

Blind Joints provide a cost effective and rigid assembly method.

The head of the BHCS is slid into the channel of another extrusion and securely fastened through a small access hole in the extrusion.

If you've never assembled one before we recommend you watch the linked guide.

This page intentionally left blank.

COMPONENT PREP

FRAME

BUILD ON A FLAT SURFACE

Build the frame on a glass or granite surface to ensure you can get it as square as possible.

B Extrusion

MIND ACCESS HOLE POSITION

We do our best to call out things that may bite you later in the assembly process but may skip things that seem obvious to us. If in doubt please refer to the CAD model, it might save you some considerable time down the road.

A Extrusion

FIRST BLIND JOINT

This design relies on blind joints to assemble the frame. We outlined the basics of blind joints on page 10.

If you've never assembled one before we recommend you watch the linked guide.

https://voron.link/onjwmcd

FRAME

COVER IN TAPE

We'll be using an extrusion as a spacer. Apply a single layer of tape to the ends to prevent scratches.

If you're not confident in the length and squareness of your extrusions print the included spacer instead.

FINDING THE RIGHT POSITION

If you are building a 250 size Trident use the 330mm E extrusion as a spacer to locate the Y extrusions.

Alternatively you can print the spacer that is included in the released files.

FINDING THE RIGHT POSITION

Using the 330mm extrusion as a spacer insert the Y rail and secure it using the access holes in the upright extrusions.

Make sure that the extrusions sit at an 90° angle and are free of any rotation/twist. The outsides of the extrusions should be flush.

RINSE AND REPEAT

Remove the spacer and repeat the steps for the other Y extrusion.

CHECK FOR SQUARENESS

Verify the angle of all corners and the overall squareness by measuring the diagonals. Refer to the second half of the linked video for additional information.

https://voron.link/kdtpzam

WHY IS THIS HERE?

As you likely skipped over the advice to flip through the entire manual we added graphics like these to assist you with the orientation of the part before you actually put them on the printer.

OVERVIEW

Individual chapters start with an overview of the components that will be built/added to the printer in the chapter.

HEAT SET INSERTS

This design relies heavily on heat set inserts. Make sure you have the proper inserts (check the hardware reference for a close up picture and the BOM for dimensions).

If you've never worked with heat set inserts before we recommend you watch the linked guide.

https://voron.link/m5ybt4d

COMPONENT PREP

VORONDESIGN.COM

ACCENT PART?

Look for Voron heart next to the part. It indicates that this is an accent part.

BIDLER

CHECK YOUR WORK

Compare your assembled parts to the graphics shown here. Pay attention to the features highlighted by the circles.

A DRIVE

VORONDESIGN.COM

UPSIDE DOWN ASSEMBLY

For ease of assembly we recommend to assemble the A and B drives upside down.

DON'T OVER TIGHTEN

The M5 bolts are threaded directly into plastic.

A DRIVE

APPLY THREAD LOCKER

Make sure to use thread locker on the set screws.

16.5

SET SCREW

aka the root of all issues

Insert both set screws and use thread locker on all set screws. Use a high quality hex driver to prevent the hex profile from stripping. Ball-end drivers are not recommended.

Loose set screws account for the majority of issues that our users report. Save yourself hours of troubleshooting and apply thread locker to all set screws during the build.

See the product's application notes for instructions - keep away from printed parts.

MOTOR ORIENTATION

Pay attention to the orientation of the cable exit. The wires from the motors will be pointing away from each other once fully assembled.

https://voron.link/fx10m8e

UPSIDE DOWN ASSEMBLY

For ease of assembly we recommend to assemble the A and B drives upside down.

DON'T OVER TIGHTEN The M5 bolts are threaded directly into plastic.

Pay attention to the orientation of the cable exit.

CHECK YOUR WORK Compare your assembled part to the graphic shown here.

Pay attention to the pulley orientation and alignment with the bearing stacks.

The first Voron printer was released to the public on March 10 2016.

OVERVIEW

YAXIS

YAXIS

YAXIS

VORONDESIGN.COM

SLIDE INTO PLACE

Slightly loosen the M5 bolt and slide into place.

M5x10 BHCS

SLIDE INTO PLACE

Loosen the bolts and slide into place.

YAXIS

SLIDE INTO PLACE

Loosen the bolts and slide into place.

YAXIS

OPTION: HALL EFFECT ENDSTOP

If you are using a Hall Effect Endstop board remove the highlighted part. Replace it with a magnet during initial calibration. See: <u>https://voron.link/hxd3cv0</u>.

REAR BRACE

REAR BRACE

VORONDESIGN.COM

SLIDE INTO PLACE

The rear crossbar can be slid into place. You may need to loosen the M5 bolts.

OFFSET EXTRUSION

The extrusion between the A and B drives is offset inwards. The upright extrusion extends past it towards the back of the printer.

Z EXTRUSION

ADJUST POSITIONING

Adjust the position of the rear extrusion to match the dimensions shown on the right.

Ensure that the rear is parallel with the frame uprights.

OTHER FRAME SIZES

The distance is shown for a 250 spec frame. Add 25mm for a 300 or 50 for a 350 sized frame.

UPSIDE DOWN ASSEMBLY

For ease of assembly we recommend to flip the printer on its head for the next steps.

YAXIS

LINEAR RAILS

HANDLE WITH CARE

The carriage can slide off the rail if not handled properly. Dropping the carriage will likely damage it. Any marks, dents or nicks might cause the linear rail to misbehave in operation.

LINEAR RAILS - PREPARATION AND MOUNTING

Most linear rails arrive with shipping oil. To ensure a smooth gliding motion and long service life, this oil needs to be removed and its rail carriage greased. See the Voron sourcing guide for a recommended list of lubricants. We attached a link to a video guide to get you started.

We opted to skip every other mounting hole in the linear rail when designing the mounting pattern for this printer. This cuts down on mounting hardware and still meets the requirements for our use case.

When tightening the bolts tighten them from the center outward to ensure that the rail sits flush on the extrusion.

https://voron.link/agu0nes

T-NUT ORIENTATION Insert the t-nuts as shown in highlight. Every other hole in the rail will be left empty.

MIND THE CARRIAGE

The carriages are designed to slide along the rail easily. This unfortunately also includes sliding off the rails.

Dropping the carriage will likely damage it.

YAXIS

CENTRED RAIL INSTALLATION GUIDE

Use the MGN9 guides to position the rail in the centre of the extrusion prior to fastening the bolts.

CENTRED RAIL INSTALLATION GUIDE

Use the MGN9 guides to position the rail in the centre of the extrusion prior to fastening the bolts.

The first design released under the name Voron was the "Voron Geared Extruder". This was on January 28 2015.

OVERVIEW

GENERIC CABLE CHAIN The 3 hole pattern is usually

found on generic cable chains.

IGUS CABLE CHAIN IGUS chain have 2 mounting holes.

CABLE CHAIN MOUNTING PATTERN

There are multiple mounting patterns for cable chains on the market. Pick the part that matches with the hole pattern on your mounting chain. The remainder of the manual will only show the "generic" pattern.

VORONDESIGN.COM Тор Back Front 101 101 \bigcirc 0 0 \bigcirc

For illustration purposes only. Do not attempt to replicate.

BOTTOM GAP

Leave a small gap between the printed part and the rail. 1-2mm is fine.

ZAXIS

BOTTOM GAP

Leave a small gap between the printed part and the rail. 1-2mm is fine.

ZAXIS

T-NUT ORIENTATION Insert the t-nuts as shown in the highlight.

BOTTOM GAP

Leave a small gap between the printed part and the rail. 1-2mm are fine.

LEFT Z JOINT

0

FLIP UPSIDE DOWN

Turn the printer upside down for the next assembly steps.

0

0

REAR MOTOR

ASSEMBLE FOUR FEET Repeat the instructions and assemble all four feet.

FEET

FEET

MIND THE PART ORIENTATION The profile shown above are towards the front and rear of the printer.

FEET

()

R

 \bigcirc

A

MIND THE PART ORIENTATION The profile shown above are towards the front and rear of the printer.

FEET

FEET

MIND THE PART ORIENTATION

The profile shown above are towards the front and rear of the printer.

X AXIS

PART PREPARATION

GENERIC CABLE CHAINS

The 3 hole pattern is usually found on generic cable chains.

IGUS CABLE CHAINS

IGUS chains have 2 mounting holes.

WHICH TO CHOOSE?

Pick the style that matches the mounting pattern of your cable chains.

RIGHT XY JOINT

RIGHT XY JOINT

VORONDESIGN.COM

CHECK YOUR WORK

Compare your assembled part to the graphic shown here.

LEFT XY JOINT

LEFT XY JOINT

LEFT XY JOINT

MISSING SOME BOLTS?

installed later.

The other two bolts will be

M3x16 SHCS

X AXIS SQUARING

SQUARING THE GANTRY

Move the gantry all the way back until it hits the A and B drive on both sides.

Fully tighten all screws on the X axis.

https://voron.link/cekh81l

The Voron Legacy is a modernized design true to the spirit of the original Voron 1.0.

THE VORON BELT PATH

Voron printers use a belt path based on the popular CoreXY pattern.

The individual belt paths are stacked on top of each other and the crossing often found in CoreXY designs is omitted. Compared to many other implementations, the motors are moved to a less intrusive position. To learn more about the principles behind CoreXY visit https://voron.link/ef72dd6

Equal belt tension is important to the proper function of a CoreXY motion system.

We recommend to run one belt to get the required length, remove the belt from the printer and cut the second belt to the exact same length. As both belt paths have the same length this is an easy way of getting a consistent tension.

BELTS

BELTS

122

BELTS

CLAMP BELTS

Clamp both A and B belts in place by installing the left X carriage part. The belt teeth face away from the extrusion.

A BELT

A BELT ROUTING

Follow the path pointed out by the arrows. Needle nose pliers, tweezers or similar tools can help in this step.

BELTING IDLERS

If you're having trouble guiding the belts around the bearing stack temporarily remove the M3x40 SHCS to get better access.

B BELT ROUTING

Follow the path pointed out by the arrows. Needle nose pliers, tweezers or similar tools can help in this step.

BELTING IDLERS

If you're having trouble guiding the belts around the bearing stack temporarily remove the M3x40 SHCS to get better access.

0

817

B BELT

X CARRIAGE Use the second part of the X carriage to capture the belt ends.

Lightly tighten the screws. The belt must still be able to move. Lightly tighten the bolts.

PULL TIGHT

Grab both belt ends with a pair of pliers and pull the belt tight.

As both belts are cut to the exact same total length and the belt paths are equal length in this design make sure the same length of belt protrudes from the carriage.

TIGHTEN BOLTS

Fully tighten the carriage bolts.

CHECK YOUR WORK Make sure that the belt is not riding on the plastic parts.

OTHER PROBE TYPES

The picture shows the recommended Omron TL-Q5MC probe.

Other probes with a similar form factor and characteristics might work as well. A design for a PINDA probe adapter is included in the released files.

ADJUST PROBE POSITION

The position can be fine-tuned later. Set an initial position of about 6mm below the plastic part.

CHANNEL FOR PROBE CABLE

Guide the probe cable into the highlighted slot.

OPTION: HALL EFFECT ENDSTOP

If you are using a Hall Effect Endstop insert a 3x6 magnet into the highlighted position during calibration. See: https://voron.link/hxd3cv0.

PRINT BED

VORONDESIGN.COM

WHICH SIDE IS WHICH?

The top of the plate has mounting holes with bores that allow boltheads to sit flush/below the surface.

The plate has additional tapped holes to secure the PE connection and a thermal fuse, those are on the back side of the plate.

MAGNET APPLICATION

Clean the plate with isopropyl alcohol or similar cleaner prior to applying the magnet.

Use the edge of a plastic object or a small roller to firmly press the magnet on the plate to get a good bond.

If you have never done this before we recommend you watch the linked guide.

https://voron.link/rm6tpld

PRINT BED

Z ENDSTOP

VORONDESIGN.COM

GT2 20 Tooth Pulley

REMOVE FLANGE & SET SCREWS

Use a bottle opener or some pliers to remove the top flange.

https://voron.link/ict0j6x

PRESS FIT

Apply the required force to fully seat the pulley in the printed part.

Microswitch

M2x10 Self Tapping

SWITCH W/OUT LEVER

This part requires a switch without lever to be installed in the shown orientation.

You can remove the lever from microswitches by gently pressing on the lever's hinge point.

You can add a notch to the Z endstop point and capture it with a set screw to

SOLDER CONNECTOR

Solder a connection from the outer two terminals of the microswitch to the connector.

BED FRAME

The second DI

BED FRAME

VORONDESIGN.COM

0

• • - •

M3x6 BHCS

BED FRAME

VORONDESIGN.COM

DON'T OVER TIGHTEN

The bolts are used to position the bearing and are bolted directly into plastic.

BED FRAME

VORONDESIGN.COM

-**---**0

LOOSEN AND RETIGHTEN

Slightly loosen the bolts that hold the bed frame to the printed parts and gently shake the bed frame before retightening them.

Front

M3x20 SHCS

ADJUST Z ENDSTOP POSITION

The shaft of the Z Endstop must not touch the print bed. Adjust the position if required. **BED WIRING**

UNIVERSAL TOOLHEAD

This printer uses the StealthBurner toolhead, which is compatible with several of the printers in the Voron lineup. To keep things organized, StealthBurner's files are maintained separately. Follow the StealthBurner assembly manual to build your toolhead, and return here to proceed.

https://voron.link/6hbi9n3

WIRING PREP

Z CHAIN ANCHOR

CABLE COVER

CABLE COVER

PANEL ORIENTATION

Align the notch to the back and in line with the Z chain anchor.

Back

TWIST TO LOCK Rotate the deck supports by 90°

to lock them in place.

171

SPACING

Roughly centre the DIN rails and space them about 80mm apart.

SLIDE INTO POSITION

Slide the mounts all the way to the extrusions.

DIN RAILS

DON'T OVER TIGHTEN The bolts are used to keep the DIN rails from sliding and are bolted directly into plastic.

ZIP TIE LOOPS

Top

TWIST TO LOCK

Rotate the zip tie loops by 90° to lock them in place.

U

Voron Trident was released on the 16th of August 2021.

RASPBERRY PI

RASPBERRY PI

24V PSU

CONTROLLER BOARD

VORONDESIGN.COM

AVAILABLE MOUNTS

We also provide mounts for other controller boards. They are assembled in a similar manner.

M2x10 Self Tapping

CONTROLLER BOARD

SSR

POWER INLET

POWER INLET

DIN RAIL MOUNTS - HOW TO

VORONDESIGN.COM

HOOK FIXED SIDE

Hook the fixed side of the printed mount to the side of DIN rail.

MOVE INTO POSITION

Rotate the part into place, make sure it does not unhook from the fixed side.

SNAP INTO PLACE

Press to snap the free side into place. The part should now sit securely on the DIN rail.

MAINS DISTRIBUTION - WAGO

PSU MOUNTING

SSR MOUNTING

SPRING LOADED

Use a flat head bolt driver to pull the latch open. It will lock open.

Be careful when releasing the latch, it will snap back into place. Mind your fingers.

RASPBERRY PI MOUNTING

CONTROLLER BOARD MOUNTING

XY END-STOP POD

VORONDESIGN.COM

END-STOP SWITCHES FOR X AND Y

End-stops are wired in a "Normally Closed" configuration. On microswitches those are the 2 outer terminals indicated by C and NC.

Prepare the switches for X and Y by soldering 150mm of wire to each of the outer terminals.

ALTERNATE X/Y ENDSTOPS

OPTION: XY ENDSTOP BOARD

XY END-STOP POD

Around 1100 images have been created for use in this manual. Slightly below 700 made it into the final document.

CONTROLLER PREP

CONTROLLER BOARD

VORONDESIGN.COM

CONTROLLER BOARD

The assembly manual will outline the wiring for a Fysetc Spider V2.2 board. You can find additional documentation and alternative configurations on <u>docs.vorondesign.com</u>

JUMPERS

Several jumpers need to be configured on the controller board. Begin by removing all the JUMPERS from the controller board (MCU).

- Remove the jumpers in the "driver sockets".
- Remove all the jumpers on the "Fan Voltage Selection"
- Remove the "USB 5V power supply" jumper
- Remove the "LED Voltage Selection" jumper
- 5) Remove the "Probe Voltage Selection" jumper

CONTROLLER BOARD

JUMPERS

Several jumpers need to be set on the MCU. Add the following JUMPERS to the controller board (MCU).

- 1) Set the jumpers in the "driver sockets" as shown to set TMC2209 UART mode.
- 2) Ensure the Power Selection header is set to the lower position (DC5V).
- 3) Set the Jumpers for the "Fan Voltage Selection" header so they match your fan's voltage. Shown here are the settings for 24VDC.
- 4) Set the jumper in "Probe Voltage Selection" header to 24VDC.
- Set the included wire jumper to the 24VDC position.

WIRING

INPUT VOLTAGE SWITCH

Check the input voltage switch of the power supply. It is located in the highlighted area behind the metal mesh.

Make sure the selection matches your local mains voltage. Refer to the Mean Well LRS-200 datasheet for possible settings (https://voron.link/e0szdyh).

POWER INLET

VORONDESIGN.COM

MAINS INLET WIRING

We show the wiring in the IEC colour scheme. Depending on your region the colour scheme and wiring standards will differ.

Mains wiring should only be done by qualified personnel trained in local regulations and safety standards. Depending on your local regulations you may be forbidden from wiring the mains side and/or putting the printer into operation; seek professional assistance.

Failure to observe those could result in bodily harm.

ATTACH 250MM OF WIRE

Cables should be at least 0.75mm² (AWG18) or thicker depending on local regulations.

ISOLATED CONNECTORS ONLY

Make sure that all mains connectors are properly isolated and meet the applicable safety standards.

ISOLATED CONNECTORS ONLY

Make sure that all mains connectors are properly isolated and meet the applicable safety standards. MAINS WIRING CONTINUED

Secure the wires with cable clips / cable tie anchors.

The bed heater is powered by AC voltage and receives its PE in a later step.

Observe your local regulations in regards to the Protective Earth connections for the frame/other components.

MAINS WIRING

ZIP TIE LOOPS

Secure the wire bundle to the strain relief using small zip ties.

215

VORONDESIGN.COM

BED CABLE HOOKUP

DC POWER

VORONDESIGN.COM

CABLE CROSS SECTION

Cables to the controller board should be 1mm² (AWG18) or larger.

0.5mm² (AWG20) is sufficient for the connection to the Raspberry Pi.

TERMINAL COVER

After installing all cables install the Meanwell TBC-09 Terminal Cover included in the BOM on the PSU. It clips onto the the terminal block.

CONTROLLER BOARD

CONTROLLER BOARD

The assembly manual will outline the wiring for a Fysetc Spider 2.2. You can find additional documentation and alternative configurations

on docs.vorondesign.com.

B MOTOR

VORONDESIGN.COM

ZIP TIE LOOPS

Secure the wire bundle to the strain relief using small zip ties.

CONTROLLER WIRING

CABLE CHAINS - OVERVIEW

VORONDESIGN.COM

CABLE CHAINS INSTALL

You can opt to install the chains now and fish the wires through the chains or build the complete harness outside of the printer and install it in one go. Either approach does work.

If you sourced a pre-built wire harness completing the harness outside of the printer is recommended.

TOOLHEAD

VORONDESIGN.COM

OPTION: TOOLHEAD PCB

If you are planing to use a toolhead PCB consult the Board manufacturer for wiring instructions.

224

TOOLHEAD CABLE ROUTING

TOOLHEAD CABLE ROUTING

VORONDESIGN.COM

ommited the loop on the part.

X END-STOP 2x 0.25mm²(AWG24) or larger

OPTION: ENDSTOP BOARD/HALL EFFECT BOARD

Those boards utilize a 4 pin connector instead. Please refer to <u>https://voron.link/djhyygu</u> and <u>https://voron.link/d6qb7o6</u> for details.

VORONDESIGN.COM

 \bigcirc

TOOLHEAD/XY END-STOP ROUTING

GENERIC CABLE CHAINS

The chains generally don't include a strain relief. Undo the bolts on the A drive and add the printed strain relief.

ZIP TIE LOOP Secure the wire bundle to the strain relief using small zip ties.

IGUS cable chains have a build-in strain relief. Don't install the additional part.

VORONDESIGN.COM

WIRING PATH Guide the wires in the highlighted path.

TOOLHEAD/XY END-STOP ROUTING

ZIP TIE LOOPS Secure the wire bundle to the strain relief using small zip ties.

XY END-STOP

CONTROLLER WIRING

HOTEND HEATER

2x 0.5mm²(AWG20) or larger

PROBE HOOKUP

The probe input of the Fysetc Spider supports a 24V probe.

If you are using a different controller board you may need to wire the probe's signal line to an endstop input using a BAT85 diode.

CONTROLLER WIRING

FAN VOLTAGE

FAN VOLTAGE

The fans recommended in the sourcing guide are 24V fans.

Please check your hotend cooling (40x40x10 axial), part cooling (40x40x20 blower) and exhaust/electronics (60x60x20 axial) fans for their voltage rating and jumper the voltage selection accordingly. Refer to the Fysetc Spider manual for possible settings.

ZAXIS

SKIRTS

HEAT SET INSERT

FRONT COVER

The front cover is held in place by the heat set inserts. Hold the front face firmly in place while inserting the heat set inserts.

BUILT-IN SUPPORT

Remove the highlighted section. It's a built-in support for printability.

OPTION: LIGHT BLOCKER

Some LCDs come with a smaller encoder knob. This extra piece prevents excess light bleed. Threads onto the encoder before the knob is pressed on.

LCD

LCD

SKIRTS

These will stay in place without any adhesive. Alternatively they can be glued in place.

SKIRTS

246

SKIRTS

SKIRTS

SKIRTS

WIRING

VORONDESIGN.COM

WHICH IS WHICH?

The socket with 1 dot below it is EXP1 and the socket with with 2 is EXP2.

WARNING: DISPLAY HOOKUP

Before connecting the display make sure to review the documentation on the Voron documentation site (https://voron.link/ypdmcb2).

If you are using a "FYSETC mini12864" please review section 3.3 of the FYSETC Spider documentation (https://voron.link/m6wtwnl).

BOTTOM PANEL

PANELS & FINISHING TOUCHES

PANELS

APPLY FOAM TAPE

Use 3mm foam tape on the contact areas between the panels and the frame to mitigate noise from vibrations.

PANELS

PANELS

PANELS

VORONDESIGN.COM

APPLY FOAM TAPE

Use 3mm foam tape on the contact areas between the panels and the frame to mitigate noise from vibrations.

PANELS

MIND THE MAGNET POLARITY

Ensure that the magnets are facing in the right direction prior to glueing them into place.

PANELS

	Ð
P	
OJ A	
	D

Ī

APPLY VHB TAPE VHB Tape is a double sided adhesive tape.

PANELS

BSPP ADAPTER

Some adapters have a small lip that prevents the PTFE tube from passing through.

Inspect the adapter and if necessary use a drill to carefully remove the lip.

EXHAUST

SPOOL HOLDER

SPOOL HOLDER

ASSEMBLY COMPLETED! ... NEXT STEP: SETUP & CALIBRATION

This manual is designed to be a reference manual for the build process of a Voron2 printer. Additional details about the build and background on advanced topics can be found on our documentation page linked below.

The software setup and other initial setup steps with your new printer can also be found on our documentation page. We recommend starting <u>here</u>.

https://docs.vorondesign.com

https://github.com/VoronDesign/Voron-Trident

HOW TO GET HELP

If you need assistance with your build, we're here to help. Head on over to our Discord group and post your questions. This is our primary medium to help VORON Users and we have a great community that can help you out if you get stuck. Alternativly, you can use our subreddit.

https://discord.gg/voron

https://www.reddit.com/r/VORONDesign

REPORTING ISSUES

Should you find an issue in this document or have a suggestion for an improvement please consider opening an issue on GitHub (https://github.com/VoronDesign/Voron-Trident/issues).

When raising an issue please include the relevant page numbers and a short description; annotated screenshots are also very welcome.

We periodically update the manual based on the feedback we get.

This page intentionally left blank.

There are some easter eggs hidding in this document. You might not spot them on a cursory glance.

Website vorondesign.com Github github.com/vorondesign

Docs

docs.vorondesign.com

Discord discord.gg/voron

